CustomFX:
A Lightweight Hand Tracking Model for Musical Instruments

Gayatridevi Tarcar
Stanford University
devigl7@stanford.edu

Abstract

Many generalized hand-recognition, tracking, and label-
ing models exist which can capably be deployed for a vari-
ety of static, video, and live applications. This generality,
obviously, is a boon in cases of quick deployment and cases
where the baseline latency is acceptable.

Using Google’s MediaPipe framework for hand-tracking
as a reference, we built a purpose-built, lighter-weight
model that is trained on specific gestures (rather than a
massive dataset of all possible hand gestures) and is de-
ployed for a single purpose. This approach will reduce
training time for our specific application (by reducing the
size of training sets) and speed up the processing of the
hand-recognition models.

The application our vision model is designed to control
is a virtual musical effects board. It has five different effects,
each keyed live by a different gesture and controlled by hand
movement. The model we use uses the Google’s MediaPipe
to process live webcam video for landmark tracking fed into
a custom-built gesture-recognition layer which controls the
musical effects.

1. Introduction
1.1. Problem

The primary problem we address is latency in real-
time musical performance systems that rely on video-based
hand tracking. Although general-purpose models such
as Google’s MediaPipe are highly capable and optimized
for broad gesture recognition, they are not designed for
domain-specific responsiveness or customization, particu-
larly in interactive musical settings. Gestural definition as
defined within Google’s MediaPipe paper (as a set of algo-
rithms computing finger-angles) is somewhat arcane to the
lay user; we seek to define a new gestural definition layer
that can be quickly trained on any custom set of gestures,
even those generated by a user.

To enable fast and expressive control over virtual mu-

Sid Yu
Stanford University
sidyu@stanford.edu

Owen Jung
Stanford University

owenjung@stanford.edu

sical effects, we built a lightweight, task-specific gesture
classification model that runs on top of MediaPipe’s hand
landmark outputs. This custom layer maps five gestures to
musical parameters: four pitch modulations (12, 7, 4, and
+12 semitones) and one reverb effect.

For music, especially live performance, speed is abso-
lutely key: We want to achieve real-time performance with
our application because precise control over rhythm is ab-
solutely key to using these tools in any serious musical con-
text.

1.2. Related Work

As discussed before, the key piece of related
work is Google’s MediaPipe, which contains a
hand-tracking model that first uses a model which
already exists, called BlazePalm, for palm track-
ing, then is trained to detect and track 21 points on
the hand (https://research.google/blog/

on-device-real-time—-hand-tracking-with-mediapipe/).

It is trained on a manually annotated dataset of 30k images,
each of which contains the 21 landmarks to track. The land-
mark detection is built on a deep CNN architecture. Then
comes gesture detection, which is based on the data from
the landmarks rather than the entirety of the image. The
gesture detection from MediaPipe is encoded via a set of
algorithms (it is not completely clear within Google’s paper
whether these algorithms are fully manually implemented
or the partial product of a neural network, but it seems
that the gestures they encoded are manually written as
combinations of the angles between the fingers, as encoded
in tracking points).The clever combination of initialization
with palm-tracking and subsequent landmark-only tracking
ensures that this model is very fast; it achieves latency
speeds of 17ms on CPU and 12ms on GP with Pixel 6.

In our work, we use MediaPipe solely for extracting
hand landmarks from live webcam video. We then dis-
card its built-in gesture layer and replace it with a custom
Multi-Layer Perceptron (MLP) classifier, trained on a la-
beled dataset of five gestures, defined in Section 1.3. To
optimize for speed and simplicity, we use only 11 of the 21

https://research.google/blog/on-device-real-time-hand-tracking-with-mediapipe/
https://research.google/blog/on-device-real-time-hand-tracking-with-mediapipe/

Figure 1. Hand landmarks (full set).

landmarks (33 input dimensions), selected based on which
joints were most expressive for our chosen gestures. This
MLP was trained from scratch using 5-fold stratified cross-
validation and achieves high validation accuracy with low
inference overhead. This is a more intuitive and customiz-
able method, where we were able to choose exactly our ges-
tures, creating a very lightweight gesture recognition layer.

Other models exist which recreate full 3-
dimensional nets of hands; for example, HaMeR
(https://github.com/geopavlakos/hamer?
tab=readme-ov-file) is a 3d recreator of hands that
is trained on a data set called Hint (Hand INTeractions in
the wild), which contains images of hands interacting with
real-world environments. These methods provide detailed
spatial representations and can handle occlusions better
than MediaPipe. However, they are computationally inten-
sive and less suited for real-time interaction, particularly in
creative applications like music.

More broadly, software environments like TouchDe-
signer have been widely adopted by artists for visual and au-
dio synthesis using motion data. While powerful, TouchDe-
signer’s gesture logic is embedded in a closed ecosystem,
limiting access to underlying models and adaptability for
developers. Our system, by contrast, is fully modular and
open, enabling precise, real-time gesture control via a min-
imal and transparent classification layer.

1.3. Data

For our dataset, because we were focusing primarily on
gesture recognition, we wanted to find a large dataset of
images that was categorized by gesture. We found the
dataset HAGRID - HAnd Recognition Gesture Recogni-
tion Dataset, which is a huge (1.5 terabyte, 1 million to-
tal images) dataset of high-definition (1080p) hand images,
annotated by gesture (18 different gestures in the original

Image Count per Gesture Class

12000

10000

8000

6000

Number of Images

4000

2000

& s

S

K o
Gesture

Figure 2. Distribution of images by gesture.

dataset, with an additional 15 in HAGRID v2) and bound-
ing boxes. Because we wanted to focus on a smaller set of
gestures and did not have the compute time or storage to
handle such a large dataset, we found a smaller version of
HAGRID v1 (500,000 images) on HuggingFace which was
downsampled from 1080p to 384p, allowing us the ability to
train on a dataset which is storable on a personal computer
and doesn’t take too much time to load into free version of
Google Colab. While the intended function of the applica-
tion is to process video, an image-only training dataset is
sufficient for the hand-recognition task.

The downsampled images, too, allow for faster train-
ing with similar accuracy, based on the results of our pri-
mary exploration. In our exploratory processing using Me-
diaPipe Hands, to improve speed, we resized each frame to
320%240, reducing computation while retaining gesture fi-
delity. We recorded the latency of each frame and computed
the average, minimum, and maximum processing times. As
a result of this optimization, we achieved an average la-
tency of around 30 ms per frame, a significant improvement
from the original 60 ms latency reported in default Medi-
aPipe usage on higher-resolution input. This confirms that
downscaling input resolution can halve the processing time
while still enabling useful landmark detection; an important
insight for designing low-latency, real-time virtual instru-
ments.

Figure 2 has the five gestures we used (Call, Fist, Like,
Palm, and One - a reduction from 18 original gestures in
HAGRID), along with the number of photos of each (be-
tween 7000 and 12000, for a total of 53702 samples). We
chose the five gestures because of their differentiability
and because they represent a broad range of possible mo-
tions representable with the eleven tracking points. To en-
sure our gestures were significantly different, we compared
their embeddings in MobileNet V2 and graphed them via
T-SNE (see Figure 3). MobileNet V2 is-as far as we can
tell-a good approximation of the feature-detection (point-
detection) layers of MediaPipe Hands, so we were confi-
dent in our dataset for the training of our gesture recognition
model.

https://github.com/geopavlakos/hamer?tab=readme-ov-file
https://github.com/geopavlakos/hamer?tab=readme-ov-file

t-SNE of Image Embeddings (MobileNetV2)

call
fist
like

30
palm

20

Figure 3. T-SNE embedding of images in MobileNetV2

Finally, we needed to shape our dataset into a format
compatible with our pipeline. The HAGRID annotations
provided gesture labels, user IDs, and bounding boxes,
which we preserved in our metadata. We then used Medi-
aPipe Hands in static image mode to generate 21 landmark
coordinates for each image, storing the results in a consol-
idated .parquet file. From these, we produced two versions
of the input: one with all 21 landmarks and one with 11
selected points (removing [1, 2, 6, 7, 10, 11, 14, 15, 18,
19]; see Figure 1) for a smaller and faster model. Unlike
MediaPipe’s internal training set and gesture layer, which
uses fixed heuristics and an opaque gesture vocabulary, our
dataset is lightweight, user-labeled, and built for flexible
training. Compared to the training data used by Medi-
aPipe, our dataset is lower in image resolution, restricted to
five clearly distinguishable gestures, and supports a reduced
landmark set. These design choices enable faster training,
reduced model complexity, and optimized real-time infer-
ence performance for our musical control application.

2. Methods and Experiments
2.1. Methods

MediaPipe Hands, developed by Google, is not fully
open-source as the core model weights are not available
but its architecture (palm detection = bounding-box crop-
ping = hand landmarking = gesture detection and rectan-
gle generation) is described in detail in accompanying pub-
lications. This structure is illustrated in Figure 4.

We used MediaPipe Hands as the foundation for our sys-
tem, leveraging its palm detection and hand landmarking
modules to extract 21 3D hand landmarks from images.
Since these models are accessible through the MediaPipe
API, we did not attempt to recreate the landmarking step.
Instead, we focused on building and training a custom ges-
ture classification layer that operates on MediaPipe’s land-
mark outputs.

camera

_______________ S s | sy | S
Real TimeFlowLimiter
Hand Detection only
runs on:
1) First frame
MAGE 2) Hand is missing
HandDetection

DETECTIONS

DET L;I 1085
DetectionToRectangle
RECT

RECT IMAGE
ImageCropping

CROFPPED_IMAGE

I?.I;.'\Et
HandLandmark

REJECT_HAND_FLAG LANDMARKS

DETECTIONS LANDMARKS IMAGE

LandmarksToRectangle - AnnotationRenderer

I—

Blue Edge:
Tempaoral back edge to next frame

REMNDERED_IMAGE

display

Figure 4. Google’s MediaPipe architecture

Our dataset consisted of approximately 53,000 images
sampled from the downsampled HAGRID-500k (384p)
dataset. We ran each image through MediaPipe in static
image mode to annotate the hand with 21 landmarks, which
we stored alongside gesture labels in a .parquet file. From
this data, we trained two versions of a gesture classification
model: one using the full 21-point landmark vector (63 di-
mensions) and another using a reduced 11-point subset (33
dimensions). Both models share the same architecture and
were trained from scratch on our custom gesture set.

Given the small number of distinct gestures in our
dataset, we hypothesized that a dedicated, lightweight ges-
ture recognition model could achieve high accuracy with
significantly lower computational cost. Rather than relying
on MediaPipe’s internal gesture logic, we trained our own
classifier on landmark vectors, making gesture detection an
explicit and customizable part of our pipeline. We briefly
considered approaches that would bypass the hand land-
marking step entirely and operate directly on image crops
using a CNN, given early experiments showed gesture clas-
sification accuracy above 90%. However, this added un-
necessary complexity compared to the performance of our
landmark-based method.

However, our gesture-detection layer was much faster

and lighter-weight when built on the reduced output (11
landmark points) provided by MediaPipe’s HandLandmark
module. Training was also significantly faster with this re-
duced input, while still achieving high accuracy. We consid-
ered using Vision Transformers or other modern architec-
tures, but the upstream MediaPipe pipeline—palm detec-
tion, internal cropping, and landmark extraction—already
produces a compact and well-structured representation of
hand pose. Figure 3 shows that our five gesture classes are
clearly separable in feature space after landmark extraction,
even without complex encoders. We trained a Multi-Layer
Perceptron (MLP) on the flattened landmark vectors, which
proved accurate, easy to implement, and fully customiz-
able. This approach eliminated the need for manually de-
fined gesture heuristics and allowed us to train on only the
gestures relevant to our musical application.

With our gesture recognition layer, we considered adding
a temporal delay mechanism, similar to the logic used in
MediaPipe’s hand detection stage, where predictions are
throttled across frames. The idea was to avoid running the
classifier on every single frame to save computation. How-
ever, our gesture model was already lightweight—trained
on only five distinct gestures—and we observed no mean-
ingful speedup from frame skipping. We also experimented
with a “reset” mechanism using the fist gesture, where new
gestures would only be detected after first returning to a
neutral fist pose. This was conceptually inspired by Me-
diaPipe’s use of hand disappearance as a reset condition,
but in practice it introduced unnecessary friction: users had
to deliberately reset between gestures, which disrupted fluid
control. As a result, we opted for continuous gesture recog-
nition without explicit temporal gating or manual resets, but
optimized it for musical applications, as detailed below.

Finally, we created a music application on top of the
gesture recognition layer. Each recognized gesture was as-
signed a unique MIDI Control Change (CC) number be-
tween 21 and 25. While the MIDI CC protocol is typically
used for sending continuous parameter values (ranging from
0 to 127), this system used it in a binary fashion to simulate
an on/off switch. When a gesture was detected, a value of
127 was sent; otherwise, a value of 0 was transmitted to in-
dicate the gesture was no longer present. These MIDI mes-
sages were sent using the rtmidi Python library, which pro-
vides an interface for communicating with MIDI devices or
software ports. The data was received in Max/MSP, a visual
programming environment for audio and media processing,
where each MIDI CC value was routed to control a specific
audio effect parameter, like pitch shift or reverb intensity.
The outputs of these effects were then combined and sent to
the digital-to-analog converter (DAC) for playback.

Train Loss (Full Landmarks)

0.375 1
—— LR=0.0003

LR=0.001
0.350 +

0.325 4

0.300 §

0.275 4

0.250 4

Avg Train Loss

0.225 4

0.200 +

0.175

2 4 6 8 10 12 14
Epoch

Figure 5. Training the full-size (21 landmark) model.

Train Loss (Reduced MLP)

—— LR=0.0003
0.50 1 LR=0.001

0.40 1

0.35 1

Avg Train Loss

0.30 4

0.25 1

T T T T T T T
2 4 6 8 10 12 14
Epoch

Figure 6. Training the reduced-size (11 landmark) model.

2.2. Experiments

Our early experiments (discussed in Section 1.3) used
the standard MediaPipe Hands pipeline on downsampled
static images from the HAGRID dataset. These tests con-
firmed that lower-resolution input (e.g., 384p instead of
1080p) retained sufficient fidelity for accurate landmark ex-
traction, and also hinted that lighter-weight downstream
models could still operate effectively. This motivated our
decision to explore architectural modifications, especially
given that minimizing latency is essential for responsive vir-
tual instrument control.

The main comparison that we made was the effects of
reducing the number of landmarks needed to classify a ges-
ture. We remove the two middle landmarks for each feature
(Section 1.3), reducing 21 landmarks to 11. The rationale
for the removal of these features depended on our gesture
set; that is, the gestures we chose were significantly dif-
ferentiable (Figure 3) even with those features (the middle
joints of the fingers) removed, as each of the gestures used
different sets of full fingers and could be differentiated with
fingertips alone.

We performed a learning rate sweep from 3 x 10~ to

Num Params

200000 Train Time (s)
175000 175
150000 150
125000 125

100000 100

Num Params
Train Time (s)

75000

50000

25000

Reduced

Reduced

Model Size (MB)

Best Val Accuracy (LR=0.0003)
0.94 0.94

0.0003)
°
'm

=3
@

Model Size (MB)
o
s

e
by

Best Val Accuracy (LR
e
N

e
o

Reduced Full Reduced (11 pts) Full (21 pts)

Best Val Accuracy (LR=0.0010)
0.94 0.94

s o o
2 & @

Best Val Accuracy (LR=0.0010)
°

0.0

Reduced (11 pts) Full (21 pts)

r

Figure 7. Comparison of accuracy and model size between reduced
and full-size model.

1 x 1072 and found that both model variants converged re-
liably across the range. Most importantly, the reduced land-
mark model achieved validation accuracy comparable to the
full model, as shown in Figures 5 and 6. These results val-
idated our hypothesis that a significantly downsized model
could still deliver strong classification performance without
compromising speed.

After this promising result, we wanted to compare our
full and reduced models of the gesture-recognition layer in
more detail. Considering the real-time and local-first ap-
plications of this model, we evaluated the full and reduced
landmark gesture MLPs based on the number of parameters,
total training time, model size (MB), and best validation ac-
curacy (Figure ??). The validation accuracy was measured
using 5-fold cross-validation. Inspecting the reduced model
of the gesture-recognition layer, we found a significantly
smaller model, with about half the number of parameters
(28,000 vs 58,000) and a quarter of the model size (0.2MB

1470+ Average Frame Processing Time by Model

14.66 ms

,_|
»
o
vl

14.64 ms

14.60

14.55¢

Average Frame Time (ms)

,_.
»
U
o

14.45

Reduced Full

Baseline

Figure 8. Comparison of accuracy and model size between reduced
and full-size model.

vs 0.8MB). We also saw nearly identical validation accuracy
(0.94 at learning rates of both 0.001 and 0.0003) for both
the reduced and full-size models. The training time was
comparable, since both models were trained for the same
number of epochs and folds, but the reduced model trained
slightly faster due to fewer input features. Overall, the re-
duced model is significantly lighter and more interpretable,
without sacrificing functionality or accuracy.

From there, we tested the latency of video frame ges-
ture recognition across MediaPipe, the full landmark ges-
ture MLP, and the reduced landmark gesture MLP. We mea-
sured the performance of our gesture recognition system
by processing a 762-frame video in headless mode across
three configurations: baseline (MediaPipe only), reduced
model (11 landmarks), and full model (21 landmarks) (see
Figure 8). For each frame, we tracked MediaPipe process-
ing time, model inference time (when applicable), and to-
tal frame processing time. The results revealed that Me-
diaPipe hand detection is the primary bottleneck, taking
12.1-12.3 ms per frame, while model inference adds only
0.11-0.12 ms of overhead. The reduced model achieved the
best performance with 68.86 FPS (14.52 ms total), slightly
outperforming both the baseline (68.29 FPS, 14.64 ms) and
full model (68.23 FPS, 14.66 ms). All configurations main-
tained real-time performance (> 68 FPS), confirming that
the reduced model architecture has an optimal balance be-
tween speed and functionality.

We did not expect the reduced model to achieve nearly
identical validation accuracy compared to the full landmark
model despite having significantly fewer parameters. Ini-
tially, we anticipated some drop in classification quality due
to reduced input dimensionality. However, the five gestures
we trained on remained easily distinguishable, even with
just 11 landmarks. As for the latency results, we saw that
the full land- mark model had a higher inference time com-
pared to the baseline MediaPipe model. We thought that

training on fewer gestures to begin with would improve the
inference speed.

3. Conclusion

In conclusion, we found that our method of filtering
landmarks to create a more lightweight local model was
effective for real-time gesture recognition. This approach
reduces computational overhead, making it easier to deploy
the model on resource-constrained platforms and at a lower
cost.

In terms of improvements in latency, we did not see as
significant of a result. There were fractions of a millisecond
gained in inference with the reduced landmark model, but
this is unnoticeable by a human. Only on tremendous scale
(very computationally expensive musical effects) would this
improvement in latency be significant.

Looking ahead, we aim to explore more selective fil-
tering of landmarks on a gesture-specific basis, as well as
investigate whether additional downsampling could further
reduce inference time. Since MediaPipe’s HandLandmark
module dominates overall processing time, we are also mo-
tivated to explore alternatives to the 21- or 11-point de-
tection systems. In particular, we are interested in test-
ing the feasibility of a direct palm-recognition-to-gesture-
classification pipeline as discussed in Section 2.1. Ide-
ally, we could collapse the landmark extraction and gesture
recognition into a single, efficient classification layer with-
out sacrificing accuracy.

4. References and Acknowledgments
4.1. References
References

[1] Bazarevsky et al. “MediaPipe Hands: On-device Real-
time Hand Tracking.” Google Al Blog, 2019.

[2] Pavlakos et al. “HaMeR: Hand Mesh Recovery from
Occluded Images.” CVPR 2022.

[3] Sandler et al. “MobileNetV2: Inverted Residuals and
Linear Bottlenecks.” CVPR 2018.

[4] Oudah, Munir et al. “Hand Gesture Recognition
Based on Computer Vision: A Review of Tech-
niques.” Journal of imaging vol. 6,8 73. 23 Jul. 2020,
doi:10.3390/jimaging6080073

4.2. Acknowledgments

Sid Yu: I contributed to the idea of filtering landmarks
to make gesture classifiers more lightweight. I constructed
and annotated the dataset used to train both gesture models.
I helped design and develop the models and created evalua-
tions to compare all models.

Gayatridevi Kamat Tarcar: I graphed our annotated land-
mark data to explore its distribution and underlying pat-
terns, built the baseline gesture recognition model, and ex-
tended the system to work with live webcam input for real-
time gesture detection. I also designed and implemented the
full music interaction protocol—mapping detected gestures
to MIDI Control Change messages and building the corre-
sponding Max/MSP patch to control vocal effects such as
reverb and pitch shifting. The system was designed to be
extensible, with the potential to support additional sound
effects. I also wrote the final draft of the report.

Owen Jung: I chose and downloaded the downsampled
HAGRID dataset that formed the base of our training data
(experimenting with many datasets), as well as . I also con-
tributed to the idea of filtering landmarks to make gesture
classifiers more lightweight (along with other unfollowed
paths described in Section 2.1). Finally, I wrote initial draft
of the paper and formatted it using LaTeX.

